Rachel Austin, Mary Sever, Christina Vizcarra and Andrew Crowther have been awarded National Science Foundation grants.
Profs. Austin, Sever and Vizcarra are collaborating to learn more about the connection between lead exposure and the brain. To that end, they have been awarded a three-year, $294,000 NSF grant. Children exposed to lead in early childhood can become developmentally impaired, and some researchers believe childhood lead exposure may be linked to autism and schizophrenia. The Chemistry of Life Processes Program in the NSF's Chemistry Division is funding the team to study the neurochemistry of a small brain-specific protein, metallothionein-3 (also known as MT-3) that has been identified because of its ability to inhibit the growth of neurons. "It is important to understand the factors that control the development of neurons and to understand how toxic metals damage the brain," says Austin.

The brain functions in part because neurons connect to one another. Too many or too few connections can cause the brain to malfunction and can lead to disorders. Lead has been shown to affect the way that neurons grow. In this grant the three professors, with Sever as the principal investigator, will study the way that MT-3, a small protein that regulates the growth of neurons, works when it is bound to zinc and copper, which are thought to be the metals it normally binds to, and lead, a metal that has no known beneficial function in brains. In particular they will look at how MT-3 interacts with actin, another protein involved in cell growth.
Actin is the most abundant protein in many cells and performs an impressive list of roles—from helping cells move to separating cells when they divide into two. Thousands to millions of actin proteins assemble into long, stick-like structures, which cells can use to perform mechanical work. There are hundreds of accessory proteins in human cells that control the timing of actin assembly. MT3 has an enigmatic interaction with actin that Vizcarra, Austin, and Sever seek to understand in greater detail.
A graduate of Knox College with a Ph.D. from Purdue University, Sever joined the Barnard faculty in 2010. She studies the effects that metal ions and small molecules have on signal pathways in neuronal cells.
Prof. Andrew Crowther was recently awarded a $195,215 grant by the National Science Foundation entitled “RUI: The Vibrational Structure of Atomically-Precise Nanostructures: From Molecular Clusters to Quantum Dots.”
Crowther is a physical chemist interested in the fundamental molecular processes and properties of nanostructures—structures that are 1,000 times smaller than the width of a human hair. The Crowther Laboratory uses micro-Raman spectroscopy, a measurement technique that provides structural “fingerprints” by which molecules and materials can be identified and their vibrational and electronic properties investigated.
The funded work, performed in collaboration with Prof. Jonathan Owen in the Columbia University Department of Chemistry, is focused on
A detailed understanding of these properties is necessary to fully realize their applications in solid-state lighting (such as LEDs) and other energy technologies.
Prior to joining Barnard, Crowther received his Ph.D. at the University of Wisconsin-Madison and performed postdoctoral research at Columbia University.
Lede image: A fluorescent image of neuronal cells. Neuronal chemistry features prominently in Austin, Sever and Vizcarra's funded research.