Urban and suburban developments have caused the loss and fragmentation of natural habitats, which consequently decreases species diversity and richness resulting in the interruption of gene flow and possible species extinction. To counter this problem, parks and incorporated ‘green roofs’ are built to conserve indigenous and local biological species to some extent. Together, these parks and green roofs can serve as biodiversity corridors, providing these biological species with a means to disperse and diversify in an area that differs from the developed matrix. Our hypothesis states that green roofs that are close to parks will have similar microbial communities to the parks which they are closest to because the microbes will disperse back and forth between these parks and green roofs. The methods of dispersal are diverse; the microbes can be either splashed or washed from patch to patch by water from rainfall or the wind can send them flying in air currents. To test our hypothesis, we would collect soil samples from both the green roofs and the closest parks and analyze these samples and then compare them to see if there are similarities between the microbial communities in the different locations. If there is a steady trend for the different sample areas, it can be concluded that there had been some level of uniform dispersal between the different patches and that green roofs and parks are equally important for all the microbes, indicating that there is constant motion of microbes between the different patches without any isolation. If the communities are different, that might suggest that the green roofs and parks are both important but for different species, indicating that certain microbes discriminate between parks and green roofs as their habitats.