The purpose of this research project was to test if non-reducible covalent protein modifications can be detected in cells that produce structural proteins of other polyomaviruses and papillomavirus. As the transient folding intermediates would be expected to constitute a minor component of total viral proteins produced, Dr. Kasamatsu’s lab recently constructed a plasmid that, when expressed in mammalian cells, allows the enrichment, purification and estimation/examination of the folding intermediates. Sub-cloning procedures were used to modify this plasmid, to incorporate coding segments of the structural proteins of human JCV-Vp1, BKV-Vp1 and HPV-L1, and successfully constructed three expression plasmids that will be useful in expressing these structural proteins in mammalian cells. These structural proteins were expressed in cells by DNA-transfection, harvested and prepared cell lysates. The cell extracts were then tested for the presence of protein modifications by SDS-PAGE and western blotting. Though HPV-L1 was not expressed, JCV-Vp1 and BKV-Vp1 were expressed. This demonstrated that the protein modification(s) similar to those observed in SV40 Vp1 are present in cells transfected with the plasmids (she constructed) for JCV-Vp1 and BKV-Vp1. A presence of a unique flag-tag at the amino terminus made it possible to estimate low abundant intermediates via monoclonal anti-flag blotting. These findings were very exciting. The presence of these intermediates provides additional insight into how the Vp1 monomer might be modified for folding, promoting our understanding of the folding and assembly of capsid proteins of, at least, polyomaviruses.