Specific Aims

Microscopy has emerged as one of the most powerful and informative ways to analyze cell-based high-throughput screening (HTS) samples in experiments designed to uncover novel drugs and drug targets. However, many diseases and biological pathways can be better studied in whole animals—particularly diseases that involve organ systems and multicellular interactions, such as metabolism and infection. The worm *Caenorhabditis elegans* is a well-established and effective model organism that can be robotically prepared and imaged, but existing image-analysis methods are insufficient for most assays.

We propose to develop algorithms for the analysis of high-throughput *C. elegans* images, validating them in three specific experiments to identify chemicals to cure human infections and genetic regulators of host response to pathogens and fat metabolism. Novel computational tools for automated image analysis of *C. elegans* assays will make whole-animal screening possible for a variety of biological questions not approachable by cell-based assays. Building on our expertise in developing image processing and machine learning algorithms for high-throughput screening, and on our established collaborations with leaders in *C. elegans* research, we will:

**Aim 1: Develop algorithms for *C. elegans* viability assays to identify modulators of pathogen infection**

**Challenge:** To identify individual worms in thousands of two-dimensional brightfield images of worm populations infected by Microsporidia, and measure viability based on worm body shape (live worms are curvy whereas dead worms are straight).

**Approach:** We will develop algorithms that use a probabilistic shape model of *C. elegans* learned from examples, enabling segmentation and body shape measurements even when worms touch or cross.

**Impact:** These algorithms will quantify a wide range of phenotypic descriptors detectable in individual worms, including body morphology as well as subtle variations in reporter signal levels.

**Aim 2: Develop algorithms for *C. elegans* lipid assays to identify genes that regulate fat metabolism**

**Challenge:** To detect worms versus background, despite artifacts from sample preparation, and detect subtle phenotypes of worm populations.

**Approach:** We will improve well edge detection, illumination correction, and detection of artifacts (e.g. bubbles and aggregates of bacteria) and enable image segmentation in highly variable image backgrounds using level-set segmentation. We will also design feature descriptors that can capture worm population phenotypes.

**Impact:** These algorithms will provide detection for a variety of phenotypes in worm populations. They will also improve data quality in other assays, such as those in Aims 1 and 3.

**Aim 3: Develop algorithms for gene expression pattern assays to identify regulators of the response of the *C. elegans* host to *Staphylococcus aureus* infection**

**Challenge:** To map each worm to a reference and quantify changes in fluorescence localization patterns.

**Approach:** We will develop worm mapping algorithms and combine them with anatomical maps to extract atlas-based measurements of staining patterns and localization. We will then use machine learning to distinguish morphological phenotypes of interest based on the extracted features.

**Impact:** These algorithms will enable addressing a variety of biological questions by measuring complex morphologies within individual worms.

In addition to discovering novel anti-infectives and genes involved in metabolism and pathogen resistance, this work will provide the *C. elegans* community with (a) a versatile, modular, open-source toolbox of algorithms readily usable by biologists to quantify a wide range of important high-throughput whole-organism assays, (b) a new framework for extracting morphological features from *C. elegans* populations for quantitative analysis of this organism, and (c) the capability to discover disease-related pathways, chemical probes, and drug targets in high-throughput screens relevant to a variety of diseases.

**Primary collaborators**

Research Strategy

A Significance

The NIH is committed to translating basic biomedical research into clinical practice and thereby impacting global human health\(^1\), and Francis Collins identifies high-throughput technology as one of five areas of focus for the NIH's research agenda\(^2\). For many diseases, researchers have identified successful novel therapeutics or research probes by applying technical advances in automation to high-throughput screening (HTS) using either biochemical or cell-based assays\(^3-6\). Researchers are using genetic perturbations such as RNA interference or gene overexpression in cell-based HTS assays to identify genetic regulators of disease processes as potential drug targets\(^7-9\). However, the molecular mechanisms of many diseases that deeply impact human health worldwide are not well-understood and thus cannot yet be reduced to biochemical or cell-based assays.

Ideally, researchers could approach disease from a phenotypic direction, in addition to the traditional molecular approach, by searching for chemical or genetic regulators of disease processes in whole model organisms rather than isolated cells or proteins. Moving HTS towards more intact, physiological systems also improves the likelihood that the findings from such experiments accurately translate into the context of the human body (e.g., in terms of toxicity and bioavailability), simplifying the path to clinical trials and reducing the failure of potential therapeutics at later stages of testing. In fact, for some diseases, a whole organism screen may actually be necessary to break new therapeutic ground; in the search for novel therapeutics for infectious agents, for example, it is widely speculated that the traditional approach of screening for chemicals that directly kill bacteria \textit{in vitro} has been largely exhausted\(^10\). Our work recently identified six novel classes of chemicals that cure model organisms from infection by the important human pathogen \textit{E. faecalis} through mechanisms distinct from directly killing the bacterium itself\(^11\). Anti-infectives with new mechanisms of action are urgently needed to combat widespread antibiotic resistance in pathogens.

Enabling HTS in whole organisms is therefore recognized as a high priority (NIH PAR-08-024)\(^12,13\). \textit{C. elegans} is a natural choice. Manually-analyzed RNAi and chemical screens are well-proven in this organism, with dozens completed\(^14-16\). Many existing assays can be adapted to HTS; instrumentation exists to handle and culture \textit{C. elegans} in HTS-compatible multi-well. Its organ systems have high physiologic similarity and genetic conservation with humans\(^17,18\). \textit{C. elegans} is particularly suited to assays involving visual phenotypes: physiologic abnormalities and fluorescent markers are easily observed because the worm is mostly transparent. The worms follow a stereotypic development pattern that yields identically-appearing adults\(^19,20\), such that deviations from wild-type are more readily apparent.

The bottleneck that remains for tackling important human health problems using \textit{C. elegans} HTS is image analysis (NIH PA-07-320)\(^21,22\). It has been recently stated, “Currently, one of the biggest technical limitations for large-scale RNAi-based screens in \textit{C. elegans} is the lack of efficient high-throughput methods to quantitate lethality, growth rates, and other morphological phenotypes”\(^23\). Our proposal to develop image analysis algorithms to identify regulators of infection and metabolism in high-throughput \textit{C. elegans} assays would bring image-based HTS to whole organisms, and have the following impact:

- **Identifying novel modulators of infection by the NIH priority pathogen Microsporidia** (Aim 1). Microsporidia are emerging human pathogens whose infection mechanisms are almost completely unknown. Further, they inflict agricultural damage and are on the EPA list of waterborne microbial contaminants of concern\(^24,25\). Identifying anti-microsporidian therapeutics is a special challenge because they are eukaryotes. Moreover, they are obligate intracellular pathogens so they are not amenable to traditional antibiotic screens; screening for drugs to kill them requires the presence of a validated, infectible host whose immune system is homologous to mammals, such as \textit{C. elegans}\(^26,27\). This screen could identify not only useful chemical research probes and compounds that kill these pathogens outright, but also those that block microbial virulence, are modified by the host for full efficacy (prodrugs), or enhance host immunity.

- **Identifying novel regulators of fat metabolism** (Aim 2). Disregulation of metabolism results in many common and expensive chronic health conditions; diabetes alone affects 24 million Americans\(^28\). Energy centers must receive and integrate nutritional information from multiple peripheral signals across multiple tissues and cell types to elicit appropriate behavioral and metabolic responses; screening in a whole organism is important. In particular, screening with a strain of \textit{C. elegans} with an RNAi-sensitive nervous system will likely reveal novel energy regulators of therapeutic and research value.
• Identifying novel regulators of infection by the pathogen *Staphylococcus aureus* (Aim 3). *S. aureus* is life-threatening for immune-compromised patients. Recently, antibiotic-resistant MRSA strains have created an urgent need for therapeutics with a new mechanism of action. We will identify genetic regulators of the *C. elegans* host’s response to infection by *S. aureus*. These will lead to potential drug targets useful for boosting humans’ innate immunity.

• Enabling the automated analysis of a wide variety of *C. elegans* screens. Because *C. elegans* has proven to be an excellent model for many human organs and processes, the impact of algorithms for automated scoring for currently intractable *C. elegans* image-based screens on our understanding and treatment of a variety of human diseases will be substantial. Adding novel *C. elegans* algorithms to existing open-source software will create a flexible toolbox that can be applied to other types of assays (including alternative formats such as microfluidics chambers; see Yanik support letter) with minimal modification:

**Aim 1:** The algorithms developed for Aim 1 will enable scoring viability and other body morphology assays probing a number of biological processes. Our collaborators plan several RNAi and chemical screens using live/dead assays to identify modulators of many other clinically relevant pathogens (see Ausubel and Mylonakis support letters).

**Aim 2:** The algorithms developed for the fat metabolism assay can also be used to quantify the levels of any stain within worms, to measure protein expression levels, the degree of staining by fluorescent dyes or antibodies, and promoter activity in reporter assays probing a wide range of biological processes.

**Aim 3:** Where localization patterns are of interest, the algorithms developed for the gene expression pattern assay will often be directly applicable, especially given the proposed machine learning capabilities.

Many benefits come from the automation of image analysis for such screens: (a) increased throughput so as to enable genome-scale RNAi and large-scale chemical screens in whole animals; (b) quantitative results amenable to data mining; (c) increased objectivity and consistency; and (d) increased sensitivity to subtle phenotypes, which often can not be scored reliably by eye. The requisite automation of sample preparation and image acquisition has the welcome side effect of improving consistency and providing a permanent record of the experiment.

• Creating open-source software for the *C. elegans* community. *C. elegans* is used for studying complex multicellular biological processes by more than 11,000 researchers in 750 laboratories worldwide (http://www.WormBase.org, January 2010), and the close-knit community rapidly shares methods. Based on our experience developing the CellProfiler software system (see Preliminary studies), packaging automated image analysis algorithms in user-friendly software encourages their use by the broader research community. Although we developed CellProfiler solely for high-throughput screening, 70% of studies citing it actually used it to quantify low-throughput assays (fewer than 100 samples). In this proposal we focus on developing algorithms that are robust and efficient for large-scale experiments, but we anticipate they will become an everyday tool for many researchers in the *C. elegans* community, a good investment since many of these are funded by the NIH.

Thus, in addition to the discovery of potential drugs and drug targets related to metabolism and infection, which could significantly impact the global burden of human disease, our aims will yield open-source software for automated, accurate, quantitative scoring for a wide range of *C. elegans* image-based assays that are currently intractable. The impact will be multiplied by *C. elegans* laboratories worldwide using the resulting software to study a wide variety of pathways relevant to basic biological research and human disease, in both low-throughput and high-throughput experiments.

**B Innovation**
In response to the strong demand for *C. elegans* screening, we propose to build on our technological innovations in sample preparation and imaging and our computational innovations for cells and brains to now create a novel technology for *C. elegans*. Our proposed work to develop novel algorithms for identifying and characterizing worms in microscopy images will bridge the final gap, for the first time enabling widespread identification of genetic and chemical regulators of human biological processes and diseases via whole-organism screening.
Automated image analysis for high-throughput screening of *C. elegans* is, in itself, novel: screens have so far been performed by eye due to the lack of suitable image analysis algorithms (excepting our simple *E. faecalis* screen11), limiting the number, types, and sizes of screens. Visual examination for a genome-wide RNAi screen takes 0.5–4 people-years; a large chemical screen1 requires more than 10 people-years. Using the algorithms we will develop, such screens can be analyzed in weeks or months. Existing algorithms for *C. elegans* morphology-guided graph search. We will also build upon methods from our work in deformation analysis to identification of worms in a high-throughput context, and leads to a novel algorithm for detangling worms by morphology-guided graph search. We will also build upon methods from our work in deformation analysis and per-cell classification of cellular phenotypes by machine learning55 to quantify phenotypic variation and fluorescence localization in individual worms.

### C Approach

#### Overview of the team and the approach

The proposed project is founded on several multi-year existing collaborations between groups studying infection and metabolism using *C. elegans* (Ausubel and Ruvkun), and computational groups focused on developing algorithms for biomedical research (Wahlby, Carpenter, and Golland), making us uniquely situated to accomplish the proposed aims. As shown in Figure C.1, our interdisciplinary team is highly interactive and our approach to image assay development is a highly iterative process; typically the majority of the work is in multiple rounds of validation and testing of novel or existing algorithms while optimizing sample preparation protocols to ensure robust real-world performance. Each proposed aim is independent, but in several instances, improvements made for one aim will benefit the others. Later sections detail our proposed algorithm development for each aim, which will occur in the rich, collaborative, interdisciplinary environment of algorithm and software development at the Broad Institute and MIT. Here we outline the team and the approach.

#### Project leadership and algorithm development: The PI, Carolina Wahlby, will lead and coordinate the collaborating groups for the project. Based on Dr. Carpenter's work with Golland's group across the street at MIT's CSAIL (since 200455–59) and the Ausubel and Ruvkun *C. elegans* laboratories across the Longfellow Bridge at MGH (since 200511,60), Dr. Wahlby was able to quickly take leadership of these projects in 2009, start her own collaborations, and develop new ideas for *C. elegans* image analysis with the Golland group (see support letter). In less than one year, this collaboration resulted in a joint, peer-reviewed paper accepted for publication61, another submitted, and the present proposal. The project’s success so far is due to Dr. Wahlby's strong computational background and previous experience managing highly interdisciplinary collaborations on application-oriented image analysis (see Bengtsson and Ekström/Alderborn support letters).

#### Wet laboratory work: The Ausubel and Ruvkun groups are separately funded, equipped, and committed to completing the wet laboratory work to image thousands of samples for each assay (see Table C.1, Preliminary studies section, Resources file, and support letters). Furthermore, the laboratories are dedicated to the study of infection and metabolism and are separately funded to follow up on “hits” from the screens, in some cases
collaborating with the Broad Institute’s Chemical Biology Platform, which has extensive experience in converting hit compounds into usable research probes or drugs.

**Software development, dissemination, resource sharing, and reproducible research:** The Carpenter group (see support letter) will implement, test, and disseminate the project team’s algorithms into readily usable software following good software engineering practices. In keeping with the Broad Institute’s mission to create comprehensive sharing of both the data (images) and software produced. Specifically, the algorithms developed will be made readily usable by biologists via the open-source CellProfiler software project for high-throughput image analysis. A major advantage of this system is that each analysis run retains complete information about the analysis and settings used, enabling reproducible research. CellProfiler runs on Windows, PC, and Unix systems, including computing clusters, and reads many image file formats via the BioFormats library. The C. elegans algorithms will also be available via ImageJ, due to a funded project to interface it with CellProfiler (Carpenter, Eliceiri, and Rasband). Building on this existing software eliminates the waste of building a separate interface for worm algorithms and ensures longevity and dissemination for the algorithms.

In addition to software engineering for the project, the Carpenter group will also be primarily responsible for software dissemination and support through direct training with other high-throughput C. elegans laboratories (see Roy, Mylonakis, and Yanik support letters, for example), via conferences (e.g., The International C. elegans Meeting, Worm Genomics and Systems Biology Conference), via the Worm Breeder’s Gazette, via online tutorials, and via public C. elegans-specific tutorials to train biologists to use the software.

**Timeline:** Work on Aim 1 will take place during the first two years. Work on Aim 2 will commence six months after funding and will be finished by the end of the third year. Work on Aim 3 will begin halfway through the second year and will be finished by the end of year 5.

**Preliminary studies supporting the approach**
In this section, we describe the independent and collaborative research completed within and among the Wahlby, Carpenter, Golland, Ausubel, and Ruvkun groups that provides the foundation for this proposal.

**High-throughput C. elegans microscopy screen for regulators of Enterococcus faecalis infection:** We recently published the first whole-animal C. elegans microscopy screen analyzed by automated image analysis. Building on a smaller, manually-scored screen, we tested 37,214 chemicals for their ability to rescue C. elegans worms from an otherwise lethal E. faecalis infection. We acquired fluorescence images of the dead worms stained with SYTOX dye, plus brightfield images showing the entire worm population. Although the image-analysis approach was relatively simple, the screen uncovered six structural classes of compounds that are “anti-infectives” and appear to cure C. elegans animals without directly affecting the growth of E. faecalis. Three of these are novel structural classes of compounds that were not found in in vitro screens for antimicrobial compounds. This validates a major premise of our proposal, that image-based screens in the whole organism C. elegans will reveal compounds acting through novel mechanisms of action, in this case, mechanisms that are only manifest when the complex host/pathogen relationship is intact.

**High-throughput C. elegans sample preparation, image acquisition, and assay development:** The Ruvkun and Ausubel labs, with help from the Carpenter group, have established the pioneering C. elegans High-Throughput Screening Core Facility. Both groups have extensive experience in developing assays and conducting large-scale screens to probe important biological questions in C. elegans, having completed manually-scored C. elegans screens relating to longevity, E. faecalis infection, metabolism, RNA inter-
ference, Candida albicans infection, synapses, immune response, molting, miRNA, diabetes, innate immune signaling, neuroendocrinology. The specific assays they developed for this proposal are described later, in the context of each Aim.

The screening center uses a workflow in which a precise number of worms within a specified size/age range are dispensed by a COPAS large particle sorter into 4–6 multi-well plates per hour, and subsequently processed using automated plate washers and microscopes. The workflows enable both RNAi and chemical screening and imaging at multiple wavelengths. The team is skilled at optimizing assay parameters such as genetic background, readout, food source, salt concentration, temperature, timing, number of replicates, and number of animals per well. Imaging is optimized by transfer from agar to liquid media to minimize imaging artifacts and a paralytic drug is often added to slow worm movement, minimizing misalignment between subsequently imaged channels. Microscopy imaging is the primary screening method: plate readers do not offer per-worm or morphological readouts and are often not compatible even with bulk fluorescence-level assays; customized flow cytometers can measure certain phenotypes, but current equipment to retrieve worms from a 96-well plate is too slow and inconsistent.

Both laboratories lead their fields and have productive records of pursuing hits from C. elegans screens. The Ausubel laboratory’s reputation stems from pioneering discoveries that many human microbial pathogens also kill C. elegans, typically using similar virulence factors, and that key features are shared between C. elegans’ immune system and the innate immune systems of mammals. The Ruvkun lab is well-respected for work using C. elegans molecular genetics and genomics, leading to the discovery of microRNAs, the first detection of microRNAs in other animals, and the discovery of their role in gene regulation. Most relevant to the proposed project is the discovery of key members of the insulin pathway that control metabolism and longevity, that were later found to be conserved in mammals.

Development of image analysis and machine learning algorithms for biomedicine: The Wahlby, Carpenter, and Golland groups each have substantial experience developing and applying image analysis algorithms to important problems in cell biology and biomedical imaging. Our expertise spans the full spectrum required for the proposed project: developing advanced image analysis algorithms, validating them in the context of real-world biological problems, and creating practical, useful software tools that are made publicly and freely available.

Dr. Wahlby was one of the pioneers in developing advanced segmentation methods for phenotype quantification in fluorescence microscopy images of cells, using nuclear stains for seeded segmentation of cytoplasm, a widely used approach today. Our algorithms for accurate delineation of individual cells in culture and tissue have proven valuable in a number of our own image-based biological experiments. The algorithms have become widely used via a software tool that also incorporates our novel algorithms for signal detection. The algorithms are also a key component of CellProfiler as a result of our collaboration with the Carpenter group in 2003. We have also developed a new approach for quantification of signal colocalization and designed methods for quantitative measurements using novel staining techniques. Our recent work on C. elegans with this proposal’s collaborators produced a novel method for segmentation of clusters of worms using a probabilistic shape model.

The Carpenter and Golland groups began collaborating in 2004 to expand the range of cell types and phenotypes amenable to automated analysis for high-throughput screening. This produced algorithms for the accurate identification of cell edges based on Voronoi diagrams in an image-based metric space, an approach for illumination correction for fluorescence microscopy images, a combination of existing algorithms, including Wahlby’s, for the accurate identification of difficult-to-segment nuclei, a workflow for handling the unprecedented hundreds of numerical measurements for each of millions of cells in dozens of experiments, and a software infrastructure in which to incorporate these algorithms and approaches (detailed below). The software, CellProfiler, and some of its algorithms will be useful for the C. elegans work proposed here. Most importantly, these algorithms have been cited in hundreds of papers in the past three years, demonstrating that they serve an unmet need in biomedical research. We directly collaborated in many important studies in a wide variety of biological fields of study and created a system for scoring complex phenotypes in high-throughput screens.
throughput image-based screens using iterative feedback and machine learning\textsuperscript{55}. We have used this software for large-scale screens for dozens of phenotypes that could not be scored by traditional methods\textsuperscript{55,128}, many of which are likely to be published in the next 1–2 years. Typically, no customization is required to accurately score phenotypes, aside from initial segmentation and feature extraction, overcoming a significant bottleneck in assay development for screens. The approach and software should be equally successful for \textit{C. elegans} screens, once accurate measurements can be obtained from individual worms.

Aside from this collaborative work, the Golland group has established computational frameworks for image-based statistical analysis of shapes as well as shape-based segmentation. Their shape analysis research\textsuperscript{129–133} explores the morphological variability of brain structures across and within different populations, which led to the development of a discriminative shape model\textsuperscript{54}. The underlying mathematical frameworks are either level-set or MRF models—both are state-of-the-art techniques for segmentation. While the analysis and extraction of brain structures has been the main focus of the group's research\textsuperscript{134}, the segmentation of natural images with various forms of priors such as shape symmetry, GMM models and user interaction have also been explored\textsuperscript{135–141}. These two complementary lines of research cover most aspects of the problems at hand—foreground/background segmentation, delineation of individual worms based on shape, and extraction of numerical measurements that are specific to worm phenotypes.

**Modular open-source software for image analysis:** Together, the Wahlby, Carpenter, and Golland groups have a track record of producing user-friendly software that is valued by the scientific community and capable of generating useful biological discoveries. The Carpenter, Golland, and Sabatini groups launched the open-source CellProfiler software project to give biologists a user-friendly interface to mix and match advanced image analysis algorithms (including our own, described above) in a modular way for high-throughput experiments\textsuperscript{56–58,115,125,142–144}. We also created companion software, CellProfiler Analyst, for the exploration and analysis of multi-dimensional, image-based screening data which could not be handled by existing software, commercial or open-source\textsuperscript{125}. These tools will be directly applicable to \textit{C. elegans}-derived data.

CellProfiler has been useful to the biological community by many measures: (a) It has been cited more than 150 times in the 3 years since publication, including high-profile studies unaffiliated with our groups,\textsuperscript{145–155} (b) The CellProfiler software is downloaded at a rate of 360/month, (c) There was widespread support from screening centers and laboratories around the world for our recent NIH R01 proposal to support CellProfiler.

**Aim 1: Algorithms for \textit{C. elegans} viability assays to identify modulators of pathogen infection**

To score chemical perturbants for their ability to rescue \textit{C. elegans} from an otherwise lethal infection by the pathogen Microsporidia, we will develop algorithms to count live and dead worms in each sample. These algorithms will delineate individual worms from clusters of worms and extract shape features that can distinguish curvy, live worms from straight, dead worms.

The successful \textit{C. elegans} viability screen described in Preliminary studies\textsuperscript{11} relied on measuring a fluorescent viability stain (SYTOX) across the population without needing to identify individual worms. However, for this Microsporidia assay, and other future live/dead screens, it is preferable to instead classify each animal as live or dead based on its shape in brightfield images; SYTOX staining adds reagent costs and sample preparation time and it is a less reliable indicator of viability from a biological perspective\textsuperscript{55}. In addition, SYTOX stains some pathogens we plan to screen as well as some types of debris, thus obscuring the signal from the worms.

**Experimental approach**

While non-touching worms can usually be delineated in brightfield images based on the differences in intensities between foreground and background, image intensity alone is not sufficient for touching and overlapping worms. The high-throughput screening assays addressed here require algorithms that separate touching and overlapping worms in static images, where motion cues are unavailable. Moreover, edges and intensity variations within the worms often mislead conventional segmentation algorithms. On the other hand, while the varying postures of the worms introduce significant extrinsic geometrical differences, the worms have similar intrinsic geometrical properties (such as length and width profile). We propose a probabilistic shape model that captures this type of knowledge in an automated segmentation method. The key ideas are the construction of a low-dimensional shape-descriptor space and the definition of a probability measure on it. Closely related approaches for shape representation include the active shape model (ASM) and its variants\textsuperscript{156}, and medial...
axis transform methods for capturing shape variability in anatomical structures and other objects and others. We learn the possible shape variations from training worms obtained by automated segmentation of a subset of worms that do not touch or overlap.

1. Construct a low-dimensional worm shape descriptor from the skeleton of the shape and its distances to the boundaries, given by the medial-axis transform. Fig. C.2 exemplifies our proposed computationally efficient representation of the shape, where we extract the skeleton of each worm (Fig. C.2C), and prune spurs by iteratively removing the shortest spur of every branch point of the skeleton. Once a non-branched skeleton is obtained, we find end points, and sample control points uniformly along the skeleton. The original worm shape can be approximately restored by placing discs with radius equal to the local worm width (Fig. C.2D) at each control point, and smoothing the edges by the pair-wise convex hull of the discs (Fig. C.2E).

2. Reduce dimensionality by Principal Component Analysis (PCA): Align descriptors by similarity transformation (i.e., rotation and translation, no scale or skew) by minimizing the sum of the Euclidean distances of corresponding points along the skeletons. Thus, non-rigid components of the deformations are completely captured within the shape variations. To make variations in worm shape symmetrical, the training set is doubled to 2N by mirroring all samples. Fig. C.2F shows the aligned skeletons of the training set. The significant similarity of the worms’ radii profiles (Fig. C.2G) allows representation of the differences in the radii by a single value, which corresponds to the median thickness of the worm. The deformations of the postures are described by the coordinates of the control points and the variation in thickness, resulting in a (2n + 1) dimensional data space. We project the vector representations of the parameterized skeletons into a lower-dimensional feature space by PCA. All the worms in the training set can be restored with good approximation by linear combinations of the eigenvectors, or “eigenworms” (Fig. C.2H).

3. Find posture probabilities and resolve clusters by graph search algorithm: The weights w of the training worms define a probability measure on the feature space of the worm deformations: \( p(x) \propto \exp(-w^T \Sigma^{-1} x) \), where \( \Sigma = \text{diag}(\lambda_1, ..., \lambda_L) \) as in. After the input images have been partitioned into worm regions (individuals and clusters) and background (Fig. C.3B) as discussed later, we find the skeleton of each cluster using the medial-axis transform (Fig. C.3C). We represent the skeleton by a sparse direct graph \( G_s = (V, E) \). The vertices V of the graph represent the skeleton segments (Fig. C.3C) and the edges E connect pairs of vertices representing pairs of skeleton segments with common intersection points. We represent a worm candidate by a path \( p_1, ..., p_N \) in the graph containing one or more vertices. Set K to the estimated number of worms in a cluster (given by cluster area) and Let \( p_1, ..., p_N \) denote the paths in the graph. We find K out of N paths in the graph by minimizing the cost functional

\[
E(p_1 \ldots p_K) = - \sum_{k=1}^{K} \log P(p_k) + \alpha \sum_{k=2}^{K} \sum_{l=1}^{k-1} |p_k \cap p_l| + \beta |\tilde{V}_k|,
\]
where \(|\cdot|\) denote cardinality or size. The first term is a requirement that the selected set of paths will have the highest probability to represent true worm shapes. The second term is a requirement that the sum of pairwise overlaps between the selected paths will be minimal. The third term is the number of vertices that are not included in the union of the selected paths, constraining the paths to cover the worm-cluster skeleton, and \(\alpha\) and \(\beta\) are scaling factors. A global minimum can be obtained by an exhaustive search for all the subsets of \(K\) out of \(N\) paths in \(G_s\). This is however a combinatorial problem of order \(\binom{N}{K}\). To reduce the computational time we apply a greedy strategy where at each stage we make a locally optimized choice of a path in the graph, until we select \(K\) paths. We applied the proposed segmentation approach to images containing worm clusters that could not be resolved based on gray-scale information alone. Most of the worms were correctly segmented as verified by visual evaluation (Fig. C.3D and C.4).

4. **Measure worm viability** by scoring the live/dead phenotype as the worm's length along the medial axis divided by the straight distance between worm's end points\(^{37,164}\). Initial studies also indicate that the shape characteristics described by the eigenworms provide a good measure of viability.

---

**Validation, evaluation, and benchmarks**

To validate and evaluate the proposed algorithm we will use a set of 6000 expert-annotated brightfield images from a previous screen\(^{11}\) in addition to images from the Microsporidia screen itself. Overall, our goal is to achieve “screenability” in terms of both accuracy and computational speed. **Accuracy:** We will use metrics accepted in the screening field to assess accuracy based on the ability to distinguish control wells with worm populations of known phenotype—hundreds of these controls are included in each experiment. If the assay readout is Gaussian, we will aim for a Z’-factor\(^{165}\) above 0.5 (>0.2 would still be acceptable); if not, we will use classification sensitivity and specificity, overall aiming to avoid visual examination for 90–95% of the samples. During the iterative process of algorithm and assay development, we will also validate individual steps of the image analysis pipeline (foreground/background segmentation, worm cluster resolution, live/dead scoring) as appropriate, comparing algorithm results to “ground truth” provided by our worm experts. **Speed:** Image processing should keep pace with image acquisition; given current image acquisition rates and cluster computing costs, our goal is 6 CPU-minutes or less per image on a typical CPU. The methods proposed are likely to meet this goal, but there are many ways to reduce computational costs if needed.

**Potential problems and alternative strategies**

**Initial foreground/background segmentation** is a prerequisite for the proposed cluster separation. If local adaptive thresholding is not sufficient, we will rely on more advanced methods, such as level-sets for foreground/background separation (Aim 2).

**Cluster skeletonization** may not coincide with the centers of the worms, skewing the cluster separation.
Over-segmenting the clusters using watersheds\textsuperscript{166} will, apart from dividing the worms into many pieces, also place watersheds at bright ridges between worms. Merging will not entangle crossing worms, but a selective merging that keeps watershed boundaries placed at bright ridges (based on local intensity information, similar to our previous work\textsuperscript{103}, but allowing also incomplete watersheds), will lead to a binary image where bright ridges are marked as background. A skeleton of such an image is more likely to guide the probabilistic shape model to a correct segmentation result. A distance transform of the binary image can guide the merging step, forcing it to preserve ridges located at a worm’s thickness from the cluster edge.

**Scoring viability from clusters:** If individual worms cannot be segmented, we will measure the proportion of cluster area occupied by straight worm segments by a simple algorithm that fits long line segments inside the cluster. The algorithm considers all pairs of pixels in a connected region, and if a line $>75\%$ of the typical worm length can connect the pair while remaining in the worm region, the pixels along the line are marked as belonging to a dead worm.

**Aim 2: Algorithms for \textit{C. elegans} lipid assays to identify genes that regulate fat metabolism**

To identify regulators of fat metabolism, we will extract lipid-related phenotypic features from populations of worms. This requires robust foreground/background separation, artifact removal, and definition of biologically relevant feature descriptors. Improvements in the first two of these goals will be applicable to a variety of assays, including those described in Aims 1 and 3.

The Ruvkun group completed a genome-wide \textit{C. elegans} RNAi screen for genes regulating lysosomal content using the fluorescent dye Nile Red\textsuperscript{60,71}, revealing a wide range of functional components of the mammalian cellular wasting cycle, due to the conservation between \textit{C. elegans} and mammals in these pathways. Although it was the first screen to probe these pathways in an intact, living animal, the scoring was manual and non-quantitative. The group recently discovered that the stain oil red O, unlike Nile Red, labels the major fat storage compartment\textsuperscript{60}. We expect to uncover novel regulators of energy metabolism using this true fat stain. We will carry out the screen using a \textit{C. elegans} strain hypersensitive to RNAi. We will also perform the screen in \textit{C. elegans} strains with perturbations in metabolic/longevity pathways; in the insulin-signaling deficient mutant \textit{daf-2} and the calorically restricted mutant \textit{eat-2}. We have already acquired images from $>4,000$ samples (in duplicate) after many months of iterative improvements in sample preparation and image acquisition.

**Experimental approach**

As compared to Aim 1’s viability assay, which requires identification of individual worms to measure shape, the lipid assay can be scored by averaged measurements from non-separated worms. The challenges include robust separation of image foreground (worms) from background, elimination of well edges and artifacts, and identification of descriptive features that reflect the fatness phenotype of each worm population correctly. We have discovered that identifying the foreground in brightfield images of \textit{C. elegans} requires a more accurate intensity threshold than is the case for most fluorescently labeled cell-based assays. In some cases, local adaptive thresholding\textsuperscript{167} is sufficient, but for more difficult cases we propose to define foreground/background using level-set segmentation that combines image intensity with gradient information. The accidental inclusion of non-worm material in the segmentation result may skew extracted feature measures leading to poor accuracy.
Figure C.6: QUantification of oil red O accumulation (an indicator of fat accumulation) for worms fed with different bacterial RNAi clones. Each point in the plot represents a worm population in a well.

Due to the specifics of sample preparation, this assay produces many artifacts that are not seen in Aim 1's assay, such as bubbles. We propose to eliminate artifacts based on gradient magnitude and color.

1. Correct for background illumination variations using existing methods based on iteratively fitting a surface (B-spline) to the image background. Illumination correction of color images is often performed on the L-component in L*a*b color space; here we propose to apply the correction on each of the RGB-color channels separately, giving the combined effect of illumination and color correction in a single step.

2. Segment foreground/background by level-set methods that rely on low level image data (intensity and gradients). We use the level-set formulation for a parameterization-free representation of the evolving worms contours. We define segmentation by assigning the positive and the negative levels of the level-set function to the object foreground and background respectively, representing the object boundary by the intersection of the level-set function with the zero plane. The functional consists of a region-based term that encourages homogeneity of image intensity in semantically related regions, an edge-based term that rewards coincidence of the object boundary with the image edges, and an edge alignment constraint that encourages evolution of the object boundary in a direction normal to the image edges. We use the first variation of the level-set functional to define the gradient-descent equations that control the evolution of the object contour.

3. Identify and eliminate image artifacts starting with the well edge, which can often be found by simple intensity thresholding. However, using a binary thresholding result as a mask often leads to the loss of dark objects close to the well edge. We therefore refine the thresholding result by defining the convex hull of the binary mask, leading to a simple and robust well segmentation. We filter out bubbles based on their gradient magnitude being greater than that of the worm edges. Finally, we filter out other artifacts such as bacterial aggregates and dust based on color, texture, and median of a distance transformation, which provides a valuable metric to discriminate between worm clusters and artifacts based on thickness.

4. Extract fat-related features from populations of worms such as averages of intensity, texture, and color (defined by individual color channels and their ratios). We will also extract normalized granularity features to quantify the texture of the oil red O stain, and measure worm width without extracting individual worms by distance transformation of the binary image foreground. The distribution of values within the resulting distance map provides a measure of width, discriminating between populations of thick versus thin worms.

5. Select descriptive features by machine learning applied to a large number of features extracted from set of control images with known phenotypes, prepared in parallel with the screen images (see Aim 3, although there in the context of per-worm measurements). Fig. C.6 shows four worm phenotypes from a preliminary experiment of the lipid assay. The two features that resulted in the best separation of the four phenotypes were extracted and plotted (Fig. C.6), where each point represents an image of a population of worms in a well, yielding preliminary separation of some phenotypes.

Potential problems and alternative strategies

Difficult foreground/background segmentation:
Worm population heterogeneity from non-penetrant RNAi may lead to poor separability of phenotypes, as they disappear in population averages. If this is the case, feature extraction from individual worms will likely be more powerful. Fig. C.7 shows data from an initial experiment where oil red O stain was quantified in individual worms. Although genetically identical, some wild type worms display the phenotype of fat mutants, and vice versa. The assay may be best scored by the percentage of individual worms meeting threshold criteria. Per worm measurements can be extracted by selecting only those worms in the population that do not touch or overlap (as long as this does not introduce a bias), or by using the methods proposed in Aim 1. We will also investigate a prior-based level-set approach for the extraction of individual worms incorporating the shape model described in Aim 1.

Subtle phenotypes: Anatomical information, such as localization of fat to worm embryos or gut, plays an important role in visual phenotype interpretation. If the features described above are not sufficient to discriminate between subtle phenotypes, we will apply the anatomical atlas described in Aim 3.

Aim 3: Algorithms for gene expression pattern assays to identify regulators of the response of the C. elegans host to Staphylococcus aureus infection

To identify regulators of an animal's response to infection by the clinically important human pathogen S. aureus, and to identify potential anti-infectives with novel mechanisms of action, we will use machine learning to classify relevant infection-response phenotypes based on the staining patterns in individual worms.

The Ausubel group has fused the promoter of clec-60 to GFP to create a transgenic strain of C. elegans that expresses the GFP reporter only when infected with S. aureus (Fig. C.8A). Expression is normally constrained to the posterior intestinal cells upon infection; our goal is to identify samples where the immune-related pathways have been perturbed and the pattern is altered; the targets of these perturbations will be regulators of the expression of immune effectors.

Experimental approach

We will measure signal localization and local texture after subdividing the animal in two different ways, then use machine learning to discern the phenotype of interest. The proposed steps are as follows:

1. Map worms to a canonical coordinate system where variations in posture have been removed while minimizing the deformation of the textures and intensity distributions within the worms. This is a prerequisite for comparing localization patterns between worms that are posed differently. It is also valuable for visual examination, as a montage of straightened worms provides a clear visual overview that can help validate hits.

As depicted in Fig. C.8, we will extract each single worm (or worm in a cluster, using the segmentation techniques of Aim 1), then re-map each worm by extracting a series of one-pixel-separated lines orthogonal to the medial axis curve and align them along a straight line that represents the anterior-to-posterior extension of the worm (Fig. C.8D–F). Distinguishing head from tail is facilitated by the use of a C. elegans strain whose head is labeled with the red fluorescent marker mye-2:mCherry.
Previous work on worm straightening has established that the main problem is that of finding a medial axis curve in 2D and 3D. For the limited resolution of HTS images, we propose to use control points along the medial axis transform and approximate the worm’s medial axis by a smooth spline function. We expect the method to successfully minimize the loss of intra-worm morphology because the rotations of the lines will be rigid, and the only loss of image resolution will be due to pixel interpolation at rotation.

2. Extract intensity and texture features from fixed regions along the worm to capture the spatial aspects of the localization. We will partition the straightened worm into pieces of equal length, then extract intensity and texture features from each partition.

3. Create an atlas of the main anatomical features to allow features to be extracted from biologically meaningful regions. In this assay, the emphasis is on signal localization and texture; a worm is not a random structure, and by mapping each worm to an anatomical atlas simplified to the resolution available in a high-throughput experiment, the context of the signals can be accessed.

We will compute the mean length and the mean width profile from a representative subset of the straightened worms in the experiment. The Ausubel lab will inspect 5–10 randomly sampled worms and independently outline the epithelium, gut, head, and uterus. These are the anatomical features that are easily discernible with the magnification and staining of this assay; for other assays the regions of interest will be different. Previous work has demonstrated the feasibility of constructing a worm atlas for high-resolution 3-D images. Some of its measurement techniques may transfer, but different algorithms are required for low-resolution, high-throughput screens where multiple worms touch and overlap.

4. Extract intensity and texture features from each region in the atlas. We will deform the atlas to match the shape of the straightened worm, then extract intensity and texture features from the regions corresponding to each anatomical feature. We plan to deform the atlas rather than the worm because it will be beneficial to preserve the scale of the textures in the tissue.

5. Train a boosting classifier to discern the phenotype of interest in individual worms. We will train the classifier in an iterative fashion, building on techniques that have performed well for cells. Using an interactive software tool, our collaborators in the Ausubel lab will initially identify a few animals as positive or negative for the phenotype. The tool will then train a classifier and display a number of worms with putative labels. Next, our collaborators will correct the computer’s errors, the classifier will be retrained, and so on. This iterative process continues until the classifier is sufficiently accurate.

We will use fast gentle boosting, which has performed well and shown resilience to overtraining in cell-based screens. The resulting classifier consists of a sequence of rules (decision stumps), each of which is a nonlinear function of only one feature. Thus, it is more transparent than many other methods: the user can see which features the classifier is using. Once we have obtained boosting scores for each individual worm, we will compute enrichment scores for each sample by reference to a beta-binomial model fitted to the experiment-wide distribution of per-worm scores. Based on our experience with subtle cellular phenotypes, we believe that a training set of a few hundred worms will be sufficient.

Validation, evaluation, and benchmarks: Our approach to evaluate screenability is the same as in Aim 1.

Potential problems and alternative strategies

Discriminating head from tail based on their width profiles as has been successful in previous work on high-resolution images of individual worms. We propose this solution if no fluorescent markers are available.

Overlapping worms: Worms are transparent, so the signals from two overlapping worms will mix. If this becomes a problem, we will algorithmically mark overlapping pixels before straightening and transformation so that they can be excluded from the feature extraction steps.